ش | ی | د | س | چ | پ | ج |
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |
عدد پی (۳٫۱۴۱۵ = π) از اعداد گنگ است. عدد پی در بسیاری از معادلاتی که با نوسان و تناوب سر و کار دارند ظاهر میشود. بنا به شواهد تاریخی نخستین بار عدد پی توسط بابلیان (۳٫۱۲۵) و مصریان (۳٫۱۶۰۴) در ۱۹۰۰ سال قبل از میلاد محاسبه شد که هر دو تا یک رقم اعشار صحیح است. همچنین در متون هندی این عدد ۳٫۱۳۹ تقریب زده شده که حدوداً تا دو رقم اعشار صحیح است. اولین کسی که عدد پی را با دقت قابل قبول تخمین زد، ارشمیدس در قرن سه قبل از میلاد بود. او به کمک روش تقریب دایره با چند ضلعیهای منتظم و به کمک ۹۶ ضلعی منتظم عدد پی را ۳٫۱۴۱۹ تخمین زد که تا سه رقم اعشار صحیح است. همچنین دانشمندی چینی بنام زو چانگ ژی در قرن ۵ میلادی عدد پی را ۳٫۱۴۱۵۹۲۹۲ محاسبه کرد که تا ۶ رقم اعشار صحیح است. غیاث الدین جمشید کاشانی دانشمند و ریاضی دان ایرانی نیز عدد پی را تا 17 رقم اعشار بدست آورد که تنها در رقم هفدهم با محاسبات امروزی تفاوت داشت. تا هزاره دوم میلادی کمتر از ده رقم اعشار عدد پی بهطور صحیح محاسبه شده بود (به کمک عدد پی تا ۱۱ رقم اعشار میتوان محیط کره زمین را با دقت میلیمتر تخمین زد). رفته رفته و با پیشرفت ریاضیات و ابداع روش سریهای نامتناهی تخمینهای بهتر و بهتری برای عدد پی بدست آمد، بطوریکه امروزه با استفاده از رایانههای شخصی میتوان این عدد را تا میلیاردها رقم اعشار صحیح تخمین زد. اگر میخواهید عدد p را تا ده رقم اعشار به خاطر بسپارید تعداد حروف کلماتِ این شعر به شما کمک خواهد کرد:
خرد و بینش و آگاهی دانشمندان ره سرمنزل مقصود بما آموزد= ۳/۱۴۱۵۹۲۶۵۳۵