ش | ی | د | س | چ | پ | ج |
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |
![]() اشتراک دو مجموعه | |
گونه | عمل مجموعه |
---|---|
گرایش | نظریه مجموعهها |
گزاره | اشتراک برابر مجموعه عناصری است که هم در مجموعه |
بیان نمادین |
مجموعهٔ شامل عضوهای مشترک دو مجموعه را اشتراک آنها مینامیم و آن را با نماد ∩ نشان میدهیم مثل : A∩B
اگر S مجموعهای ناتهی از مجموعهها باشد و عضو دلخواهی از S، اشتراک همه اعضای S که آنرا با
یا
نشان میدهیم بهصورت زیر تعریف میشود:
مجموعه بالا طبق اصل تصریح وجود دارد و با استفاده از اصل موضوع گسترش میتوان نشان داد که یکتاست.
اشتراک "صفر"تا مجموعه در حالت کلی تعریف نمیشود؛ اما در یک مسئله خاص اگر مجموعه مرجع U باشد، تعریف میشود .
اشتراک دو مجموعه دلخواه A و B را با نشان داده و میخوانیم "A اشتراک B". اشتراک سه مجموعه A، B و C را با
،... و اشتراک n مجموعه
را با
نشان میدهیم. میتوان نشان داد که
مهمترین ویژگی اشتراک دستهای از مجموعهها این است که زیرمجموعه همه آنهاست. فیالواقع اشتراک آنها بزرگترین مجموعهایست که این ویژگی را دارد.
اگر اجتماع دو مجموعه A و B را با نشان دهیم، به ازای هر سه مجموعه A، B و C داریم: