Name | Sides | Properties |
---|
monogon | 1 | Not generally recognised as a polygon,[18] although some disciplines such as graph theory sometimes use the term.[19] |
digon | 2 | Not generally recognised as a polygon in the Euclidean plane, although it can exist as a spherical polygon.[20] |
triangle (or trigon) | 3 | The simplest polygon which can exist in the Euclidean plane. Can tile the plane. |
quadrilateral (or tetragon) | 4 | The simplest polygon which can cross itself; the simplest polygon which can be concave; the simplest polygon which can be non-cyclic. Can tile the plane. |
pentagon | 5 | [21] The simplest polygon which can exist as a regular star. A star pentagon is known as a pentagram or pentacle. |
hexagon | 6 | [21] Can tile the plane. |
heptagon (or septagon) | 7 | [21] The simplest polygon such that the regular form is not constructible with compass and straightedge. However, it can be constructed using a neusis construction. |
octagon | 8 | [21] |
nonagon (or enneagon) | 9 | [21]"Nonagon" mixes Latin [novem = 9] with Greek; "enneagon" is pure Greek. |
decagon | 10 | [21] |
hendecagon (or undecagon) | 11 | [21] The simplest polygon such that the regular form cannot be constructed with compass, straightedge, and angle trisector. However, it can be constructed with neusis.[22] |
dodecagon (or duodecagon) | 12 | [21] |
tridecagon (or triskaidecagon) | 13 | [21] |
tetradecagon (or tetrakaidecagon) | 14 | [21] |
pentadecagon (or pentakaidecagon) | 15 | [21] |
hexadecagon (or hexakaidecagon) | 16 | [21] |
heptadecagon (or heptakaidecagon) | 17 | Constructible polygon[17] |
octadecagon (or octakaidecagon) | 18 | [21] |
enneadecagon (or enneakaidecagon) | 19 | [21] |
icosagon | 20 | [21] |
icositrigon (or icosikaitrigon) | 23 | The simplest polygon such that the regular form cannot be constructed with neusis.[23][22] |
icositetragon (or icosikaitetragon) | 24 | [21] |
icosipentagon (or icosikaipentagon) | 25 | The simplest polygon such that it is not known if the regular form can be constructed with neusis or not.[23][22] |
triacontagon | 30 | [21] |
tetracontagon (or tessaracontagon) | 40 | [21][24] |
pentacontagon (or pentecontagon) | 50 | [21][24] |
hexacontagon (or hexecontagon) | 60 | [21][24] |
heptacontagon (or hebdomecontagon) | 70 | [21][24] |
octacontagon (or ogdoëcontagon) | 80 | [21][24] |
enneacontagon (or enenecontagon) | 90 | [21][24] |
hectogon (or hecatontagon)[25] | 100 | [21] |
257-gon | 257 | Constructible polygon[17] |
chiliagon | 1000 | Philosophers including René Descartes,[26] Immanuel Kant,[27] David Hume,[28] have used the chiliagon as an example in discussions. |
myriagon | 10,000 | Used as an example in some philosophical discussions, for example in Descartes's Meditations on First Philosophy |
65537-gon | 65,537 | Constructible polygon[17] |
megagon[29][30][31] | 1,000,000 | As with René Descartes's example of the chiliagon, the million-sided polygon has been used as an illustration of a well-defined concept that cannot be visualised.[32][33][34][35][36][37][38] The megagon is also used as an illustration of the convergence of regular polygons to a circle.[39] |
apeirogon | ∞ | A degenerate polygon of infinitely many sides. |