مهدی حسین پورمقدمی

مهدی حسین پورمقدمی

دبیر ریاضی ، تبریز
مهدی حسین پورمقدمی

مهدی حسین پورمقدمی

دبیر ریاضی ، تبریز

Polygon names and miscellaneous properties

Polygon names and miscellaneous properties
NameSidesProperties
monogon1Not generally recognised as a polygon,[18] although some disciplines such as graph theory sometimes use the term.[19]
digon2Not generally recognised as a polygon in the Euclidean plane, although it can exist as a spherical polygon.[20]
triangle (or trigon)3The simplest polygon which can exist in the Euclidean plane. Can tile the plane.
quadrilateral (or tetragon)4The simplest polygon which can cross itself; the simplest polygon which can be concave; the simplest polygon which can be non-cyclic. Can tile the plane.
pentagon5[21] The simplest polygon which can exist as a regular star. A star pentagon is known as a pentagram or pentacle.
hexagon6[21] Can tile the plane.
heptagon (or septagon)7[21] The simplest polygon such that the regular form is not constructible with compass and straightedge. However, it can be constructed using a neusis construction.
octagon8[21]
nonagon (or enneagon)9[21]"Nonagon" mixes Latin [novem = 9] with Greek; "enneagon" is pure Greek.
decagon10[21]
hendecagon (or undecagon)11[21] The simplest polygon such that the regular form cannot be constructed with compass, straightedge, and angle trisector. However, it can be constructed with neusis.[22]
dodecagon (or duodecagon)12[21]
tridecagon (or triskaidecagon)13[21]
tetradecagon (or tetrakaidecagon)14[21]
pentadecagon (or pentakaidecagon)15[21]
hexadecagon (or hexakaidecagon)16[21]
heptadecagon (or heptakaidecagon)17Constructible polygon[17]
octadecagon (or octakaidecagon)18[21]
enneadecagon (or enneakaidecagon)19[21]
icosagon20[21]
icositrigon (or icosikaitrigon)23The simplest polygon such that the regular form cannot be constructed with neusis.[23][22]
icositetragon (or icosikaitetragon)24[21]
icosipentagon (or icosikaipentagon)25The simplest polygon such that it is not known if the regular form can be constructed with neusis or not.[23][22]
triacontagon30[21]
tetracontagon (or tessaracontagon)40[21][24]
pentacontagon (or pentecontagon)50[21][24]
hexacontagon (or hexecontagon)60[21][24]
heptacontagon (or hebdomecontagon)70[21][24]
octacontagon (or ogdoëcontagon)80[21][24]
enneacontagon (or enenecontagon)90[21][24]
hectogon (or hecatontagon)[25]100[21]
257-gon257Constructible polygon[17]
chiliagon1000Philosophers including René Descartes,[26] Immanuel Kant,[27] David Hume,[28] have used the chiliagon as an example in discussions.
myriagon10,000Used as an example in some philosophical discussions, for example in Descartes's Meditations on First Philosophy
65537-gon65,537Constructible polygon[17]
megagon[29][30][31]1,000,000As with René Descartes's example of the chiliagon, the million-sided polygon has been used as an illustration of a well-defined concept that cannot be visualised.[32][33][34][35][36][37][38] The megagon is also used as an illustration of the convergence of regular polygons to a circle.[39]
apeirogonA degenerate polygon of infinitely many sides.
نظرات 0 + ارسال نظر
امکان ثبت نظر جدید برای این مطلب وجود ندارد.